
Journal of Chronratograplry, 87 (1973) l-7 
@ Elsevicr Scientific Publishing Company, Amsterdam - Printed in The Netherlands 

EFFECT OF NON-EQUILIBRIUM IN GAS CHROMATOGRAPHY 

CHROM. 6975 

J. PHLLLIP MUTH, DAVID J. WILSON’ and KNOWLES A. OVERHOLSER 

Dcpartnrorrts of Clrsrnical Engtnceritrg artd Clronistry, Vandcrbilr Utrivcrsity, Nashvilfe, Term. 37235, 
(U.S.A.) 

(Reccivcd June bth, 1973) 

SUMMARY 

The effect of the finite rate of mass transport of solute between the moving and 
stationary phases in gas chromatography is investigated theoretically by means of a 
time-constant approach. Tailing and shift of the peak maximum toward larger times 
are found; the shift is not consistent with treatment of the effect as a simple contri- 
bution to the effective diffusion constant. 

INTRODUCTION 

The various theories of the line shapes obtained in gas chromatographic (CC) 
work have been critically reviewed by Giddings’, who lists numerous references. The 
major factors affecting peak shape are summarized in the Van Deemter equation2, 
and include eddy diffusion (caused by the irregular paths the gas takes through the 
column packing), molecular diffusion in the vapor phase, and resistance to mass 
transfer between the stationary liquid phase and the moving vapor phase. Common 
practice has been to lump these three effects together as a theoretical plate height or 
an effective diffusion constant, thereby obtaining gaussian peaks. A number of more 
detailed analyses led to such complicated mathematical expressions that numerical 
evaluation was not attempted3 *4; one notable exception to this is the probabilistic 
approach of Giddings and coworkers’*‘, which under normal experimental conditions 
yields a relatively simple asymptotic formula. 

The principal difficulty with the analysis of line shapes by means of the differen- 
tial equation for diffusion in a moving gas stream is that of taking into account non- 
equilibrium effects in the mass transport of solute between the stationary liquid phase 
and the moving vapor phase. Inclusion of these leads to a pair of coupled partial 
differential equations which can be solved formally, but the solutions are not easy to 
evaluate numerically, being double integrals with Bessel functions in the integrand’. 
Nevertheless, the approach through the differential equations for diffusion has much 
to recommend it, in that the variations in gas flow-rate, molecular diffusion’ constant, 
and distribution coefficient (if we have a non-linear isotherm) with distance along the 
column are easily included in the equations. 

Vink has carried out line shape calculations by means of a mesh technique for 
solving the partial differential equations 6s7, Olson has studied the contribution of 
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carrier gas expansion in the column to peak width*. Kocirikg and Yamazakil9 have 
used moment methods in the analysis of non-equilibrium chromatographic line shapes, 
and Houghton l1 has developed a perturbation method for simultaneously handling 
diffusion and non-equilibrium effects in mass transport between the mobile and 
stationary phases. Certainly the most general and thorough analysis of the entire line 
shape problem is the stochastic approach developed by Giddings and coworkerslg5. 

We present here a method of taking mass transport into account approximately 
by means of a time constant. This yields a single linear differential equation, the 
solution of which is not difficult. Plots of peaks are given for a number of values of the 
effective diffusion constant and of the mass transport time constant. 

ANALYSIS 

Here we derive and solve a differential equation determining 
GC. Let 

line shapes in 

K=distribution coefficient of solute between the solvent 
phase 

and the vapor 

x= distance from the inlet of the column 
u(x) = carrier gas velocity at the point x 

C(x,t)=gas phase solute concentration at the point x and time t 
C,(x,r)=liquid phase solute concentration at the point x and time t 

D(x) = effective gaseous diffusion constant 
Bdx = volume of liquid phase between x and x-l- dx 
Adx = volume of gaseous phase between x and x + dx. 

We consider the material balance for the volume element included in dx during a time 
interval dt. To permit non-equilibrium between the moving (vapor) and stationary 
(liquid) phases, we set 

C,(x,t) = KC(x,t - 2) (1) 
where r is a time constant measuring the lag in response of the solute concentration 
in the liquid to the concentration in the vapor. 

The solute coming in from the left equals to 

u(x)./4 l C(x,t)dt -AD(x) 
aC(x,t)dt 

au 
. 

(bulk flow) (gaseous diffusion) 

The solute coming in from the right equals to 

X(x -I- dx, t)dt 
-u(x-~dx)~A~C(xJrdx,t)dt+AD(x-I-dx).-~x 

v(x) - 

0 x x+dx 
Fig. 1. Column geometry. 

L 

Therefore, the net flow of solute into the volume element is given by 
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1 
- A & [o(x)c(x,t)l dxdt (2) 

Now the net accumulation of solute in the volume element in the time interval dt 
is given by 

Adx~C(x+dx/2,t+dt)+Bdx~Cl(x+ddx/2,t+dt) 

--ddxoC(x+dx/2,t)-Bdx,Cl(x-f-dx/2,t) (3) 

On using eqn. 1 to replace C, in expression 3, we obtain 

/g ~aJu> + BK acw-t) 
at at (4) 

Conservation of solute molecules then yields 

(5) 

This equation is fairly general; it permits us to take into account the effect of pressure 
drop in the column in increasing v(x) and D(X) with increasing X, and the effect of 
failure of solute to reach local equilibrium between the vapor and liquid phases. 

Normal practice is to set t=O, assume that D and o are independent of x, that 
the column extends to infinity in both directions, and that the initial distribution of 
solute is given by C&O) = C,B(x), where S(X) is the Dirac &function. The solution to 
eqn. 5 under these conditions is readily obtainable by Fourier transform methods, and 
is shown in many texts to be 

(6) 

where V--A-I-BK, and u’=oA. 
We proceed as just described, except that we do not set z=O. We expand 

X(x,t-t)/at in a Taylor’s series and drop terms above those linear in z to obtain 

DEJ2C UK 8C BKt lJ2C ---= -a-- 
ax2 ax at A at2 

(7) 

The substitutions (L. = length of column) 

X=&r 

t _ UA+BK)ll 
VA 

D l = DfLv 

Tl = vKABt f (A-l- BK)2 

convert eqn. 7 into 

a2c 
D1- aq2 

ac =_z 

-ax, 
a2c + ac 

lq at, (8) 
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We note that in the absence of resistance to mass transport between phases, the 
position of the peak maximum with respect to xl should be at x1 = 1 (with x=L) 
when t I = 1 (with 2 =L(A -I- BK)/trA). 

We use the method of separation of variables, assuming C(X,,t,)=X(x,)T(tJ 
to obtain 

D~x”-x’-tAX=o (9) 

and 

tIT“- T’-AT=0 (10) 

where 1 is the separation constant. We wish to fit initial conditions, C@,O), by means 
of Fourier transform techniques, so we assume X(x-,)=exp(ikxr); this, with eqn. 9, 
yields 

and the solution to eqn. 10 is then 

Tk(fl)=A(k)exp 
(1+4t&*tr 

- -2t-- 
1 1 

We obtain as the general solution to eqn. 8 

s 

03 
C(x1,t) = A(k)exp(ikX1)Tk(tl)dlc 

-03 

Taking C(x,,O) = C03(xI) yields 

A(k) = 2 s co 

-03 
G(x,)exp( - ikxl)dxl = 2 

and 

s m 

exp(ikx,)exp 
(1 -i-4tIDlk2+ i4tIk)*tt dk 

-UY 221 1 
Writing the square root in eqn. 14 in standard form, a-!-ib, yields 

a(k)=+{(l -I-4t1DIk2)+ [(l -I-451D,k2)2+1Gt12k2]~} 

b(k) = 2tI k/a(k) 

(11) 

(12) 

(13) 

(14) 

(15) 

We are interested in the time dependence of the concentration at .u=L (with 
x1 = 1); with this substitution and the use of De Moivre’s theorem we obtain 

C(l,Z,) = 2 
s 

o3 
exp~(1-a)?~/2~,]~{cos(k-Ict~/n)~isi~~(k-~ctl/a)}dk 

-=Q 

Since u(k) is an even function of k, the exponential is an even function of k, the cosine 
is even, and the sine is odd. The integral thus reduces to 

C(l,Z,) = + 
s 

co 
exp [t,(l - a)/2tI]cos(k- kt,/a)dk 

0 
(16) 
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We did not find this integral tractable to further analysis, so evaluated it nu- 
merically on an XDS Sigma 7 computer for a variety of values of z1 and D,. Approx- 
imately 0.6 min of computer t!me was required to generate each curve. 

Written in terms of our dirnensionless parameters and variables, eqn. 6 becomes 

C(x1,tJ = CO 
(4.II%0 

exp[ -(Xi-tJ2/4DIt1J (17) 

We shall be interested in comparing the results of cqn. 17 with the results of eqn. 16. 
At the detector end of the column x1 equals to unity, and we can readily demonstrate 
that C(l,t,) takes on its maximum value at 

t,(max.)=(l +D1’)*-Di (IS) 

i.e., at values of I, which are less than unity. We further note that C(l,t,) is not a 
gaussian function oft 1 ; in fact, it is seen in Fig. 2 to be skewed somewhat and to show 
tailing toward larger values of tl. (It is often tacitly assumed that because C&t) is a 
gaussian function of x, it is also a gaussian in t, the abscissa of recorder plots. This is 
not the case.) 

ci , /z ;;I?c;=0,; 

0 0.5 1.0 
t, / 

Fig. 2. Lint shape from linear equilibrium theory. 01=0.01: r=O. 

Fig. 3. Model for calculating the time constant G. 

A rough estimate of z, the time constant associated with mass transport between 
phases, is readily obtained as follows. We consider the standard problem of diffusion 
into a layer of liquid phase of thickness 6, backed by an impervious support, and 
placed in contact with a reservoir of solute at fixed concentration Co at t=O (see Fig. 3). 
NY/& (O&=0, and C(&t)= Co are the boundary conditions, and the simple one- 
dimensional diffusion equation is 

4 
a2c ac 
-3- 

ax2 at 
(19) 

where Dl is the diffusion constant of the solute in the liquid phase. Solution of eqn. 
19 by separation of variables and use of the boundary conditions gives 

c=co4 “c &OS (21yzx 
?I=0 

exp( - D, [‘2n&1)lr]2,) 

as the form of the solution, from which we see that the longest time constant is 

rmow. = 4 (21) 
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which we take as our approximation to z. z is proportional to the square of the solvent 
loading on the column. 

4- 

3- 

2- 

: 

I- 

O 

’ 1=.001 

0 

C 

4- 

3- 

2- 

I- 

O ’ 1, 2 

Fig. 4. Line shapes from linear noncquilibrium theory for various values of 71.; DI= 10-5. 

Fig. 5. Lint shapes for various values of ~1; Dl=S x 10-d. 

4- 

Fig. 6. Line shapes for various values of tl; 01=0,001. 

Fig. 7. Line shapes for various values of ~1; D1=0.002. 
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Fig. 8. Lint shapes for various values of tl; D1=0.005. 

RESULTS 

The results obtained by numerical integration of eqn. 16 are shown in Figs. 4 
through 8. In each figure the dimensionless diffusion constant D, is fixed (10e5, 
5 x 10-4, 10-J, 2 x 10-3, 5 x 10’3) and the dimensionless time constant for mass 
transport is permitted to range through the values IO-j, 5 x 10e3, 10m2, 5 x 10S2, 10”. 

We note that the asymmetry and tailing of the peaks observed earlier in Fig. 2 
(for which our mass transport time constant was set equal to zero) are also observed 
when we permit -c to take on finite values. The position of the peak maximum is shifted 
toward larger values of t1 with increasing t, which is opposite to the effect noted in 
eqn. 18, that increasing the effective diffusion constant D, results in shifting the peak 
maximum toward lower values. 

These results indicate that rate effects in the mass transport of solute between 
the stationary and the moving phase cannot be taken into account with complete 
accuracy by simply treating them as a contribution to a gaussian standard deviation. 
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